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Off-lattice Monte Carlo simulation of polymer brushes in good solvents
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We report an off-lattice Monte Carlo calculation of the equilibrium properties of a monodisperse
polymer brush in a good solvent. We find that the density profile, in general, is in agreement with
the results of self-consistent field theory, with some discrepancies observed near the wall and at the
tail of the profile. Other quantities, such as the probability distribution of monomers, the average
bond orientation, and the relative mean square displacement of monomers, are also compared with

the results of the self-consistent field theory.

PACS number(s): 36.20.—r, 81.60.Jw, 82.65.Dp, 82.70.—y

I. INTRODUCTION

Considerable research effort has recently gone into the
study of the structure and the physical properties of
systems of uncharged polymers embedded in a solvent
and end-grafted onto a solid surface. These systems are
known as polymer brushes for sufficiently high polymer
densities and they have wide industrial applications as
adhesives, colloidal stabilizers, and lubricants [1]. For
example, colloidal particles which are coated by polymer
films repel each other due to the repulsive interaction
between monomers, thereby inhibiting undesirable floc-
culation processes. The properties of the brush depends
on the density of the polymers, the quality of the solvent,
and the type of grafted polymer molecule among others.
In this work we concentrate on uniform unbranched poly-
mer strands in a good solvent.

Specifically, we consider an ensemble of polymer chains
of length N grafted onto a substrate with a surface den-
sity 0. We also assume that the chains do not interpen-
etrate and that each one is uniformly distributed in a
hypothetical cylinder. This cylinder has a surface area
proportional to 0~ ! and a height h. Therefore the aver-
age density of monomers is given by (¢) ~ No/h. In a
good solvent the monomer-monomer interaction is dom-
inated by excluded volume effects given by Fex/kpT ~
weN20 /h, where w; is the excluded volume parameter.
This interaction tends to swell the polymer. The ex-
cluded volume interaction is balanced by an elastic en-
ergy given by F/kgT ~ h%?/N. The competition be-
tween the two energies leads to an expression for the op-
timum height given by A ~ N(w0)'/3 [2]. The same
result can be obtained using a scaling argument in which
the chain is considered as a series of connected blobs, di-
rected perpendicularly to the grafting plane, where the
diameter of a blob is proportional to o~1/2, and the poly-
mer performs a self-avoiding random walk in each blob
[3]. It is important to note that these arguments, known
as the Flory argument and the scaling argument, respec-
tively, assume that the density profile of the brush is a
step function.

An analytical description of polymer brushes was ob-
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tained from self-consistent field (SCF) theory where no
assumption is made about the density profile. This the-
ory was introduced by Milner, Witten, and Cates [4] and
Skvorvtsov et al. [5]. Here the action of each separate
chain is minimized independently on the basis of mean
field theory giving rise to an equation for a single chain
path which can be mapped onto the classical path of a
point mass in a harmonic potential. Unlike either the
Flory or the scaling arguments, SCF theory predicts a
monotonically and parabolically decaying density profile
in the direction normal to the grafting wall for moder-
ately high grafting densities o. It should be noted that
even though the profile predicted from this theory is dif-
ferent from that assumed by the Flory or the scaling the-
ories, all three theories give the same scaling form of h
with N, o, and w;. Recently, Yeung et al. [6] extended
SCF theory to include lateral correlations in the ran-
dom phase approximation. Further theories include the
work of Carignano and Szleifer [7], who used an approach
based on the probability distribution function formalism
of Ben-Shaul et al. [8] for surfactant films.

There are several numerical simulations of polymer
brushes using Monte Carlo methods to move the chains
on a lattice [9-11] or using molecular dynamics (MD) on
the bead-spring models [12,13]. Although some param-
eter fitting must be done in order to compare with the
self-consistent theory results, as in the work of Lai and
Zhulina [11], the simulations have the advantage of in-
cluding the full effect of fluctuations. We note that due to
its mean field basis, the SCF theory does not account for
fluctuations around the single chain configuration which
minimizes the action. The numerical simulations obtain
density profiles in good agreement with SCF theory for
regions not close to the two ends of the profile. A deple-
tion layer is observed close to the grafting wall and an
exponentially decaying tail is found at large distances.
These two discrepancies with the SCF theory become
more apparent when the grafting density is small. The
numerical calculations are so far limited to a relatively
small number of chains of short length, since it is diffi-
cult to move a topologically connected object on a lattice
and at the same time sample enough configurations in a
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Monte Carlo simulation. It is furthermore very time con-
suming to solve Newton equations for a large number of
monomers in a MD calculation.

Until recently, the experimental verification of the the-
oretical predictions was mostly limited to global informa-
tion concerning the brush, such as its average height but
not its profile. Recently, Auroy et al. analyzed a brush
of grafted polysterine using small-angle neutron scatter-
ing and found that the brush has essentially a parabolic
profile with an exponential tail [14]. Factor et al. [15]
used neutron reflectivity and surface tension measure-
ments to examine the structure of diblock copolymers
adsorbed at liquid ethyl benzoate-air interfaces. This
system forms a polymer brush at the air interface for a
considerable range of polymer densities and the authors
confirm the height scaling law predicted by the above
mentioned mean field and scaling theories. For the pro-
file, they observe a depletion layer close to the surface,
a parabolic profile, and an exponential tail in agreement
with predictions from the simulations.

In this paper, we report an off-lattice Monte Carlo cal-
culation of the equilibrium properties of polymer brushes
with precisely the same Hamiltonian as used in SCF the-
ory for good solvents [4,5]. The motivation of this study
is twofold. First, we wish to make a direct comparison
between our results which include fluctuations and the
predictions of SCF theory. Since the same Hamiltonian
is used both for our calculations and for the SCF analy-
sis, no parameter fitting is required. Second, we wish to
test this method in the context of polymer brushes. As
shown below, the method does indeed generate results in
overall agreement with SCF theory. Since our method is
very efficient, we expect that other more difficult polymer
systems such as polymer melts and diblock copolymers
at an interface can be successfully simulated.

The model Hamiltonian and the numerical method
used for our calculations are described in Sec. II. The
numerical results are presented and compared with the
SCF predictions in Sec. III. These include the density
profiles for several sets of parameters, the probability
distributions, the average of the bond orientation, and
other results. Our results are discussed in the context of
existing theoretical work in Sec. IV.

II. MODEL AND NUMERICAL METHOD

We first describe the Edwards Hamiltonian used in this
paper [16]. Let r;(n) be the position of the nth monomer
on on the ith polymer chain. The Hamiltonian for a
monodisperse polymer solution consisting of K chains,
each composed of (N +1) monomers is written as follows:

H{ri(n dr;( 2

e} Z/ o(EE) ).
The first term is the sum of Gaussian stretches of two
neighboring monomers on the same chain. V{r;(n)} is a
short-range interaction potential between monomers. In
the case of polymers mixed with a good solvent, V is the
second term in the virial expansion of the interaction en-
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ergy and corresponds to the excluded volume interaction.
In this case it is given by

V(r(m)} = qus [ e (o), 2)

where a good solvent is characterized by a positive value
of wy. ¢(r) is the local concentration of monomers which
can be written as

K N

The Hamiltonian can then be rewritten as follows using

Eq. (3):
5 () ],

H{ri(n)}
(4)

kBT

In our simulations, we used wy, = % for the second virial
coefficient. The third virial coefficient is required in the
case of a poor solvent or a © solvent. In order to cal-
culate ¢ from the the spatial positions of the monomers,
appropriate coarse graining is required. One possibility is
to devide the system into a fine cubic grid and count the
number of monomers in each cube. Another method is
to coarse grain via a Gaussian function. We found both
methods give essentially the same results. For the sim-
ulations described in this paper, we used the following
Gaussian form for the coarse graining to obtain ¢,

B(r:(n)) = (b-j/-:)
XZ/ imesp (1542~ 1)

b

(5)
Here b is small but finite and for the results reported here
we have fixed b = 0.4. In our simulations the system con-
figuration is described by the spatial positions of the indi-
vidual monomers. Thus the integration in (5) is replaced
by a summation. In our representation of the polymer
brush, one end of each polymer chain is grafted at a ran-
dom position on the substrate corresponding to the zy
plane (z = 0). The other monomers are constrained to
lie in the upper half-space (z > 0). The simulations are
carried out using the standard Metropolis Monte Carlo
technique in real space. At every Monte Carlo move, we
attempt to change the position r;(n) of a monomer and
compute the local concentration ¢ using Eq. (5). This
new value of ¢ is then substituted into the Hamiltonian
(4) to calculate the energy change due to this attempted
move. The move is then accepted or rejected using this
energy change according to the Boltzmann probability in
the usual way. Since detailed balance is always satisfied
by the algorithm, the equilibrium state will be reached
after a sufficient number of Monte Carlo moves. In this
algorithm, the connectivity of a chain is automatically en-
sured by the stretching term in the Hamiltonian. Hence
moving nearest neighbor monomers too far apart costs
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a large amount of energy and any configurations of this
type will therefore be rejected.

For all simulations, we used K = 100 chains with
(N + 1) monomers each, where N = 40, 60, and 100.
The grafting densities used in the simulation correspond
to o = £ =0.05, 0.1, 0.16, and 0.2, where S is the area
of the grafting substrate. For NV = 100 we only consid-
ered the first three values of . 10> Monte Carlo steps
per monomer were used for each simulation, including
equilibration of the system. For the initial condition, we
used a fully stretched profile with small fluctuations in
the monomer positions.

III. RESULTS

The physical quantities calculated in our simulations
were chosen to be those which were also analyzed by the
SCF theory. Figures 1(a) and 1(b) show several density
profiles obtained from our simulations for different sur-
face densities and chain lengths. These profiles clearly
show a depletion layer adjacent to the grafting surface.
In contrast with SCF theory which does not predict such
a depletion layer, almost all previous numerical simula-
tions [9-12] and some numerical mean field calculations
on finite chain brushes [7,17,18] show the same behav-
ior. We discuss the scaling of the depletion layer below.
As expected, the profiles have a monotonic decay instead
of the constant profile predicted by the scaling and the
Flory arguments [2, 3]. For distances far from the graft-
ing plane, we observe that the density profile decays to
zero smoothly in contrast to that predicted by SCF the-
ory. This is in good agreement with the prediction of
Milner [1] for finite chains, i.e.,

¢(z) ~ exp[-C(z — h)*/?), (6)

where C scales as N~1/261/® and h is the brush height
obtained from SCF theory [4, 5]. This implies that the
tail of the profile has a length scale which is given by
lisit ~ N'/36~1/°, Therefore, relative to the height of
the brush, l;,;1/h becomes vanishingly small as the poly-
mer chains become infinitely long. The MD simulations
of Murat and Grest [12] and the mean field calculations
of Carignano and Szleifer [7] show the presence of a re-
gion at intermediate distances from the grafting plane
over which the density profile is flat for grafting densities
o > 0.1. Our Monte Carlo simulations do not see such
profiles even for grafting densities as high as ¢ = 0.2.
The reason that the MD simulations see a flat profile
may be due to the fact that the interaction potential
used in these simulations contains higher order terms in
the virial expansion, whereas the Hamiltonian used in our
simulations does not explicitly contain high order terms.
In fact, using SCF theory, it can be shown that a rather
flat profile can be obtained from the full Flory-Huggins
free energy [1].

The SCF theory predicts the following density profile
for relatively high grafting densities and long chains:

7I'2

¢(z) = 8N2‘UI2

(h? — 2) 6(h — 2), ()

where the brush height h is given by

h= (Li)l/s(awz)l/sN. (8)

™

Equations (7) and (8) lead to the following scaling form
for ¢:

#(2) L 2
525 = B, (H*-2Z*)0(H - Z), (9)
where H = h/(0c'/3N) and Z = z/(0c'/3N) are the
rescaled brush height and the rescaled distance from the
grafting plane, respectively. In order to check the exis-
tence of such a scaling and to compare explicitly with
the SCF theory, we show in Fig. 2 the scaled profile
#(z)/o?/® as a function of the scaled distance form the
wall z/(No'/3) for all the systems investigated by our
simulations together with the SCF prediction (solid line).
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FIG. 1. Density profile ¢(z) as a function of the distance
from the grafting plane 2. (a) corresponds to N = 60 and
o = 0.05 (circles), o = 0.1 (squares), 0 = 0.16 (diamonds),
and o = 0.2 (triangles), and (b) corresponds to o = 0.16 and
N = 40 (circles), N = 60 (squares), and N = 100 (diamonds).



3202 MOHAMED LARADIJI, HONG GUO, AND MARTIN J. ZUCKERMANN 49

25 T T T

0.5

0.0 hilidniiadind
0.0 0.4 0.8 1.2 1.6

FIG. 2. Scaled density profiles ¢(z)/0?/? as a function
of scaled distance from the grafting plane z/(No'/?) for
(N, o) = (40,0.05) (open circles), (40,0.1) (open squares), (40,
0.16) (open diamonds), (40,0.2) (open triangles), (60,0.05)
(pluses), (60,0.1) (crosses), (60,0.16) (stars), (60,0.2) (close
circles), (100,0.05) (close squares), (100,0.1) (close diamonds),
and (100,0.16) (close triangles). The solid line corresponds to
the SCF prediction, Eq. (9).

Apart from the region close to the grafting plane and the
tail of the profiles, our Monte Carlo data collapses rea-
sonably well onto a universal curve. As expected the data
collapse of the density profiles improves with increasing
values of 0 and N. Furthermore, the simulated density
profiles collapse onto the scaled SCF density profile given
by Eq. (9).

Scaling arguments predict that the size of the depletion
layer scales as ~1/2 [19]. In order to check this scaling,
we show ¢(z)/0?/? as a function of zo'/? in Fig. 3. From
this figure it can be seen that all systems with different
values of N and o follow a master curve close to the
grafting plane for zo/2 < 0.7 in agreement with the
above scaling.

The scaling form predicted by the Flory argument or
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FIG. 3. The scaled density profile ¢(z)/a?/® as a function

of za1/3.

SCF theory implies that for large NV, there is only one rel-
evant length scale along the axis normal to the grafting
plane. This length scale can be considered from several
points of view. In this context and in order to be consis-
tent with previous analytical and numerical calculations,
we studied the length scale by calculating the average
thickness of the brush

(2) = f0°° dzz¢(z)
fom dz¢(z)

and the square of z component of the radius of gyration

(R2,) = %i& AN dn(z,-<n) -5 /ON dnzi(n))2>.

(11)

SCF theory predicts that the average thickness and the
z component of the radius of gyration are given by

(10)

3 [ 12wy0 /3
@=3(2) ~ (12)
and
2/3
2/1 4 12wq0
2y _ 42 _ 2% N? 13
<Rgz> 5(2 71-2)( 2 ) ’ ( )

respectively. Figure 4 gives our numerical values for the
scaled brush thickness, (z)/(No'/3) versus No'/3, and
the scaled radius of gyration, (R;z)l/z/(Nol/s), together
with the lines predicted by Egs. (12) and (13). A scaling
behavior in the density profile is expected to hold when
both of these lengths become independent of No'/3. Al-
though our numerical prediction shows that we are not as
yet in the scaling regime, the trend of the data indicates
that (z) and (R2,)'/? are converging towards the SCF
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FIG. 4. (a) Average thickness (z)/(No'/3) and (b) the z
component of the radius of gyration (Rg,)l/z/(Nol/a) as a
function of No'/®. The solid line is from Eq. (12) and the
dotted line is from Eq. (13). Circles correspond to N = 40,
squares correspond to N = 60, and diamonds correspond to
N =100.
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values. We also note that for small values of NV, the value
of Nol/3 at which the scaling regime begins is itself small.
This can be understood using simple scaling arguments.
Such an argument is based on a crossover from a brush
of stretched polymers where (z) ~ No'/3 to a brush of
nonstretched polymers where the radius of gyration is
smaller than the average distance between grafting sites.
This is expected to occur when N3/5 ~ 1/5'/2, i.e., when
No'/3 ~ N3/5. This shows that the crossover point in-
creases with increasing N. A similar result was obtained
by Murat and Grest from their MD simulation [12].

For further comparisons with SCF theory, we cal-
culated the probability distributions of a sequence of
monomers on a chain. Figure 5 shows normalized distri-
butions for ¢ = 0.1 and N = 60. We observe that the dis-
tribution p,(2) becomes more extended as the monomer
index n increases and its width is greatest for the free
ends of the polymers, as expected.

SCF theory predicts the following form for the proba-
bility distribution of a given monomer n,

3z

o (57) ]

This implies that the distribution follows a simple scaling
form, i.e., pn(2)sin(3%) is a function of z/sin(3% ) inde-
pendent of the monomer index n. In Fig. 6 we show the
scaled probability distributions for three different param-
eters and compare them to SCF theory. First, reasonably
good scaling is observed apart from the monomers with
low index n relatively close to the grafting surface. As
expected, the comparison between our scaled distribu-
tion and the SCF prediction improves as both NV and o
increase. The comparison is best for the region to the left
of the maximum in the distribution. An important result
is that all our data show distributions which are rather
concave in this region in agreement with the SCF re-

pn(z) =

(14)

0.2 T T T

P.(2)
o
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0.0 L L
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z
FIG. 5. The monomer probability distribution for N =

60 and o0 = 0.1. Curves from top to bottom correspond to
n/N=0.2, 0.4, 0.6, 0.8, and 1, respectively.
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sults [4,5]. Previous lattice Monte Carlo simulations [9-
11], however, obtained distributions which are convex for
small z/sin(2%). This is believed to be due to the fi-
nite stretching of monomers in these models as has been
shown by an SCF theory which takes into account this
effect [20]. Finally, for larger values of z our distributions
decay more slowly than the SCF prediction in agreement
with other Monte Carlo [9-11] and MD simulations [12].
A further comparison with the SCF theory can be
made for the average height (z,) of the nth monomer.
SCF theory predicts that
. nm 3w, . N«
(2n) = (2zn) sin aN = 16hsm SN
Figure 7 shows the scaled average distance of the nth
monomer from the grafting layer (z,)/(No*/3) as a func-
tion of n/N together with the SCF prediction. This fig-
ure shows that the simulation results agree quite well
with SCF theory, particularly for high values of N and
o.
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FIG. 6. The scaled distribution probability for (a) N = 60
and o = 0.1 and (b) N = 100 and o = 0.16. The points corre-
spond to n/N = 0.2 (circles), n/N = 0.4 (squares), n/N = 0.6
(diamonds), n/N = 0.8 (up triangles), and n/N = 0.8 (down
triangles).
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FIG. 7. Average height of monomers (2,) as a function
of n/N. The solid curve correspond to Eq. (12) normalized
by No'/3. Shown data correspond to (N, o) = (100,0.1) (cir-
cles), (100,0.16) (squares), (60,0.16) (diamonds), (60,0.2) (up
triangles), (40,0.16) (down triangles), and (40,0.2) (pluses).

Another comparison with SCF theory can be made via
the average orientation of the monomers along the chain
as characterized by cos 6,,, where 0,, is the angle that the
bond between the (n — 1)th monomer and nth monomer
makes with the z axis. In this case SCF theory predicts

1 K zi(n) — zi(n — 1)
(cosbp) = K ;<|ri(n) —ri(n— 1)|>

3 1/3
= 13_6 <§7r4w20'> cos zn—; (16)

The average cosine of the bond angle has a scaling form
(cosB,)/a'/3, which is a function of n/N only. Figure
8 shows (cos@,)/c/® as a function of n/N for all the
systems studied to compare with the theoretical predic-
tion. Once again, the Monte Carlo results compare rea-
sonably well with the SCF theory results, except for the
monomers close to the grafting surface. The behavior
of this function close to the grafting surface is, however,
similar to previous brush simulations. Figure 8 implies
that the first few bonds of the chain close to the grafting
surface are considerably more stretched than the other
bonds in the chain. This is due to an effective repulsion
with the grafting surface and should be correlated with
the depletion layer shown in the density profile. More-
over, the average cosine of the bond angle is always pos-
itive which indicates that on average the polymer chains
do not fold back on each other and are therefore ex-
tended. This is consistent with the behavior of the aver-
age distance (z,) from the grafting plane which always
increases as n increases.

We also calculated the relative mean square dis-
placement of the monomer positions along the z axis
(A22)/(2,)%. This quantity is shown in Fig. 9(a) for
o = 0.05 and several system sizes and in Fig. 9(b) for
N = 40 and several grafting densities. Our results are
shown together with the mean square displacement pre-
dicted by SCF theory,
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FIG. 8. Normalized cosine of monomer bonds (cos6,)/

o'/ versus n/N for (N, o) = (40,0.05) (open circles), (40,0.1)
(open squares), (40, 0.16) (open diamonds), (40,0.2) (open tri-
angles), (60,0.05) (pluses), (60,0.1) (crosses), (60,0.16) (stars),
(60,0.2) (close circles), (100,0.05) (close squares), (100,0.1)
(close diamonds), and (100,0.16) (close triangles). The solid
line is the SCF prediction from Eq. (16).
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FIG. 9. Mean square displacement of monomers for (a)

o = 0.05 and N = 40 (circles), N = 60 (squares), and N =
100 (diamonds), and (b) N = 40 and o = 0.05 (circles), o =
0.1 (squares), o = 0.16 (diamonds), and N = 0.2 (triangles).
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((?Z;fz) _ %(g)zq =0.1528. (17)

This is a constant which is independent of grafting den-
sity N and monomer index n. Figure 9 shows that our
results are quite different from the SCF predictions, as
was the case with the results of lattice Monte Carlo
simulations [10, 11]. Instead of a constant, the data
show a minimum which approaches the SCF value, Eq.
(17), as N or o are increased. Furthermore, there is a
flat region around the minimum which becomes broader
with increasing N. Finally, our calculated values for
(A22%)/(z,)? are always larger than those predicted by
SCF theory, since the distributions obtained from our
simulations are broader than the SCF distributions. Our
results are in contrast to those previously found from lat-
tice Monte Carlo simulations [10,11] which give smaller
values for (Az2)/(z,)? than those found from SCF the-
ory. The fact that they obtained smaller values is due
to the finite extensibility of monomers in their models
which results in probability distributions narrower than
those predicted from SCF theory [4,5]. This has been
shown by the work of Shim and Cates [20].

IV. DISCUSSION

In summary, we have studied the equilibrium proper-
ties of a polymer brush in a good solvent using a direct
Metropolis Monte Carlo method for the Edwards Hamil-
tonian. The computational advantage of this algorithm
is the absence of the topological constraints enforced in
many standard numerical methods. Our results are in
good agreement with those of SCF theory with some dif-
ferences which can be ascribed to the presence of fluc-
tuations in the simulations resulting from finite chains.
In particular, we found that physical quantities such as
the density profile, the average monomer height, and the
average bond cosine of the brush compare well with the
results of SCF theory [4, 5].

For the monomer position probability distribution
pn(z) we observed reasonable scaling between the dis-
tributions of different monomers as expected from SCF
theory, but the shape of the scaling function was some-
what different from the SCF result. That the numerical
distributions are always broader than the SCF predic-
tion can be understood since fluctuations present in the
simulations always try to make the monomer position
more uncertain. The comparison between our simula-
tion results and the SCF predictions improves as N and
o increase. Thus it is likely that in the large N and
o limit, the Monte Carlo simulation will approach the
SCF results completely. For finite N and small values
of o as studied here, the distributions which are broader
than the SCF prediction lead to larger values of the rel-
ative mean square displacement of monomers along the
z axis than the SCF prediction. The SCF theory [4, 11]
predicts a relative mean square displacement which is in-

dependent of o, N, and particularly the monomer index
n. In our simulations, we observed that the relative mean
square displacement depends on the monomer index n.
This is because the probability distributions for different
monomers have not reached scaling regime completely.

We note that the differences between our Monte Carlo
results and those of SCF theory are similar to what was
found by Lai and Zhulina [11] where they used the bond-
fluctuation algorithm to move the polymer chains on a
lattice. They proposed that the differences which they
observed could be caused by deviations from Gaussian
stretching. Differences may also occur since the bond-
fluctuation model contains higher order terms in the
virial expansion while SCF theory for good solvents used
only the second virial coefficient. In our simulations we
used the same Hamiltonian as that of SCF theory but ob-
tained similar results as those from the bond-fluctuation
algorithm. It is therefore likely that the difference be-
tween Monte Carlo simulations and SCF theory are due
to fluctuations which decrease with increasing IV and o.

The presence of both a depletion layer and an expo-
nentially decaying tail in the density profile have been
observed in previous numerical SCF (17, 18], in Monte
Carlo simulations [9-11] and in molecular dynamics sim-
ulations [12]. We have also observed such a behavior in
our simulations. While the depletion layer is due to an
effective repulsion between the monomers and the graft-
ing wall, the presence of a decaying tail is closely related
to the shape of the monomer distribution function, as
shown in Fig. 6. The monomer distribution function,
when computed using SCF theory, has a sbarp cutoff
to zero. However, our Monte Carlo simulations give a
slow decay at large z values due to fluctuations in the
monomer positions at the end of the brush. The differ-
ence in the distribution functions gives rise to the dif-
ference in the tail region of the brush density profiles.
Apart from these differences our data agree well with the
SCF prediction of the density profile. Given the gen-
eral agreement with SCF theory, we conclude that fluc-
tuations do not strongly affect the physical properties of
polymer brushes in a good solvent in the framework of
the Edwards model. However, fluctuation effects may
be considerably more important for the case of poor sol-
vents.

The applications of the direct Monte Carlo method
presented in this paper are not restricted to the verifica-
tion of the results of SCF theory. This method enables
us to study more difficult situations where analytical the-
ory has limited predictive power. For instance, we can
study the effects of thermal fluctuations which were not
understood previously. We are at present applying this
method to the study of polymer brushes in a poor solvent
for which recent simulations using the bond-fluctuating
model [11], molecular dynamics method [21], and calcu-
lations based on the random phase approximation [6] in-
dicate the occurrence of microphase separation. Finally,
we point out that while the direct Monte Carlo method
as applied here allows the system to go to equilibrium,
the dynamics used to relax the system does not reflect
reality. In order to study the dynamics one must employ
more appropriate techniques.
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